Release of arachidonate from membrane phospholipids in cultured neonatal rat myocardial cells during adenosine triphosphate depletion. Correlation with the progression of cell injury.
نویسندگان
چکیده
The present study utilized a cultured myocardial cell model to evaluate the relationship between the release of arachidonate from membrane phospholipids, and the progression of cell injury during ATP depletion. High-energy phosphate depletion was induced by incubating cultured neonatal rat myocardial cells with various combinations of metabolic inhibitors (deoxyglucose, oligomycin, cyanide, and iodoacetate). Phospholipid degradation was assessed by the release of radiolabeled arachidonate from membrane phospholipids. In this model, the current study demonstrates that (a) cultured myocardial cells display a time-dependent progression of cell injury during ATP depletion; (b) the morphologic patterns of mild and severe cell injury in the cultured cells are similar to those found in intact ischemic canine myocardial models; (c) cultured myocardial cells release arachidonate from membrane phospholipids during ATP depletion; and (d) using two separate combinations of metabolic inhibitors, there is a correlation between the release of arachidonate, the development of severe cellular and sarcolemmal damage, the release of creatine kinase into the extracellular medium, and the loss of the ability of the myocardial cells to regenerate ATP when the metabolic inhibitors are removed. Thus, the present results suggest that during ATP depletion, in cultured neonatal rat myocardial cells, the release of arachidonate from myocardial membrane phospholipids is linked to the development of membrane defects and the associated loss of cell viability.
منابع مشابه
Inhibition of the release of arachidonic acid prevents the development of sarcolemmal membrane defects in cultured rat myocardial cells during adenosine triphosphate depletion.
Previous studies have suggested that phospholipid degradation is closely associated with the development of sarcolemmal membrane injury. This study was initiated to characterize the effects of synthetic inhibitors of phospholipase activities using a cultured myocardial cell model in which arachidonic acid is liberated after treatment with the metabolic inhibitor, iodoacetate. Pretreatment with ...
متن کاملAlterations in cation homeostasis in cultured chick ventricular cells during and after recovery from adenosine triphosphate depletion.
Alterations in cation homeostasis during and after recovery from myocardial ischemia may account for some of the reversible and irreversible components of myocardial cell injury. To investigate possible mechanisms involved, we exposed cultured layers of spontaneously contracting chick embryo ventricular cells to media containing 1 mM cyanide (CN) and 20 mM 2-deoxyglucose (2-DG), and zero glucos...
متن کاملAccumulation of unesterified arachidonic acid in ischemic canine myocardium. Relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids.
Studies in ischemic canine left ventricle have shown that the depletion of membrane phospholipids is a critical event in the development of a sarcolemmal calcium permeability defect and associated irreversible myocyte injury. The mechanism of phospholipid loss is unclear, but may be due to the activation of endogenous phospholipases. Since arachidonic acid is a fatty acid found almost entirely ...
متن کاملThe effect of non-steroidal anti-inflammatory drugs on adenosine triphosphate content and histamine release from rat peritoneal cell suspensions rich in mast cells.
1 Non-steroidal anti-inflammatory drugs (NSAID) suppressed compound 48/80-induced histamine release from rat peritoneal cells in vitro in a dose-dependent manner. 2 NSAID suppressed the adenosine triphosphate (ATP) content of rat peritoneal cells in vitro and this correlated strongly with the suppression of compound 48/80-induced histamine release. 3 The correlation demonstrated suggests that t...
متن کاملArachidonate released upon agonist stimulation preferentially originates from arachidonate most recently incorporated into nuclear membrane phospholipids.
When icosanoid-producing cells are stimulated by an agonist, 2-10% of total cellular arachidonate is released from phospholipids, and a variable percentage of the released arachidonate is subsequently converted into icosanoids. We used a mouse fibrosarcoma cell line (HSDM1C1) which synthesizes prostaglandin E2 in response to bradykinin stimulation to address the following questions: 1) upon cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 75 6 شماره
صفحات -
تاریخ انتشار 1985